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without the aid of the continuity, while the divergence form is primary conservative. The
relations between the present and existing quasi-skew-symmetric forms are also revealed.
Commutable fully discrete finite difference schemes of convection are then derived in a
staggered grid system, and they are fully conservative provided that the corresponding dis-

Finite diffefe_nce' crete continuity is satisfied. In addition, a semi-discrete convection scheme suitable for
Compact finite fhfference compact finite difference is presented based on the skew-symmetric form. The conserva-
Fully conservative tion properties of the present schemes are demonstrated numerically in a three-dimen-
Secondary conservative . [ . co
Staggered grid system sional periodic inviscid flow. The proposed fully discrete fully conservative second-order
Regular grid system accurate scheme is also used to perform the DNS of compressible isotropic turbulence
and the simulation of open cavity flow.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The fully conservative finite difference scheme is recognized as a useful tool for unsteady turbulence simulations like DNS
and LES, since it is free of numerical dissipation and offers stable long-term integration. The scheme is composed of a proper
set of discrete governing equations for incompressible flow as shown in Morinishi et al. [1]. In particular, the finite difference
for the convective term is one of commutable convection schemes for divergence, advective, and skew-symmetric forms,
which are equivalent if the corresponding discrete continuity is satisfied. In addition, the schemes for divergence and
skew-symmetric forms have primary and secondary conservation properties, respectively, without the aid of the continuity.
Here, the secondary or quadratic conservation property is the property with which the quadratic quantity of a transport var-
iable is conserved, while the primary conservation or merely conservation property is the one for the standard conservation
form. For instance, the continuity is the primary mass conservation equation, and the kinetic energy is the quadratic quantity
of momentum. Therefore, the fully conservative finite difference scheme for incompressible flow conserves momentum and
kinetic energy simultaneously in the inviscid limit as long as the discrete continuity is satisfied. The convection scheme in
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the original staggered method by Harlow and Welch [2] was one of the fully conservative second-order accurate convection
schemes. Fourth and higher order accurate schemes were proposed by Morinishi et al. [1]. Vasilyev [3] extended the fourth-
order scheme to non-uniform meshes by introducing mesh mapping, although his method had commutation error and was
not fully conservative. Fully conservative high-order accurate schemes in a non-uniform cylindrical coordinate system were
derived by Morinishi et al. [4]. The fourth-order convection scheme by Verstappen and Veldman [5] is not fully but second-
ary conservative.

Extension to compressible flow has been attempted by some researchers. For instance, Nicoud [6] simply extended the
fourth-order accurate incompressible convection schemes by Morinishi et al. [1] to compressible ones. Desjardins et al.
[7] extended the high-order accurate cylindrical method by Morinishi et al. [4] to compressible flow. Actually, the convection
schemes for divergence and advective forms corresponding to those in Nicoud [6] and Desjardins et al. [7] are semi-discrete
fully conservative schemes for compressible flow. It is known that the skew-symmetric form has a role of de-aliasing [8,9],
and some skew-symmetric like forms, called quasi-skew-symmetric forms in this study, were used for unsteady compress-
ible flow simulations [10-15]. However, no convection scheme of skew-symmetric form which is secondary conservative for
compressible flow has been proposed so far. This is due to the lack of knowledge of commutable convection forms for com-
pressible flow equations.

For variable density low-Mach number flow simulations, an implicit time marching method is preferred due to severe
stability restriction by the acoustic velocity. For incompressible flow, a fully (spatio-temporal) discrete fully conservative
method was constructed by Ham et al. [16] with an implicit mid-point time marching method. Pierce et al. [17] and Wall
et al. [18] have tried to construct a fully discrete fully conservative scheme for compressible flow, their convection schemes,
however, have temporal second-order error about the secondary conservation.

In this study, the form of convective terms for compressible flow equations is discussed in the same way as for an incom-
pressible one by Morinishi et al. [1], and fully conservative finite difference schemes suitable for shock-free unsteady com-
pressible flow simulations are proposed. The paper is organized as follows. Forms of convective terms for compressible flow
equations are analyzed in Section 2. Conservation properties of mass, momentum, and energy equations are reviewed in Sec-
tion 3. These conservation properties are regarded as analytical requirements for a proper set of discrete equations for com-
pressible flow. In Section 4, fully discrete fully conservative finite difference schemes for variable density low-Mach number
flows are proposed in a staggered grid system. Semi-discrete convection schemes with the standard and compact finite dif-
ferences are also discussed in Section 5. Numerical tests are performed in Section 6. For the reader’s convenience, schemes in
a regular grid system are presented in Appendix A, and a non-uniform grid arrangement of the fully discrete fully conserva-
tive finite difference scheme in a staggered grid system is presented in Appendix B.

2. Forms of convective terms for transport equations of compressible flow

The transport equations of conserved variables for compressible flow are in general cast into the conservative form.
opy  opwo _ oFy
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In this equation t is time, x;(i = 1,2, 3) are spatial coordinates, p is density, u; are the components of velocity vector, and
F,; are the components of flux for ¢. Repeated indices of vector and tensor components follow the summation convention.
The physical meaning of the term “conservative form” comes from the nature of (1). Applying Gauss’ divergence theorem to
(1) yields
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where S is the surface area surrounding volume V, and n; is the outward surface normal. For compressible flow, the sum of
the density weighted variable (p¢) in the volume is conserved in time if the sum of the flux (Fy4 — pu;¢)n; through the sur-
face has disappeared. This means that (p¢) in the volume is conserved in time for periodic or flux-free flows if the transport
equation is written in the conservative form. The form of convective terms in (1) is called divergence form. On the other
hand, the left-hand side of (1) is sometimes rewritten into the following form:
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The latter is equivalent to the former with the aid of the continuity,
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The equivalence, however, is not always valid for a discrete counterpart. For incompressible flow, some special finite dif-
ference schemes hold the equivalence and also secondary conservation property and are suitable for unsteady turbulent flow
simulations. In this study, the form of the convective term for compressible flow equations is investigated in the same man-
ner as for an incompressible one by Morinishi et al. [1]. That is, the left-hand side of the continuity, (Cont.), and the diver-
gence and advective forms of convective terms, (Div.), and (Adv.),, are respectively defined as
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Note that the temporal derivative term is included in each definition because of the equivalence through the continuity:
(Div.), = (Adv.), + ¢ (Cont.). (8)
Then, the skew-symmetric form is defined as the arithmetic average of the divergence and advective forms:
1, .. 1 . 1 1
(Skew.), = E(Dw.)¢ +§(Adv.)¢ = (Div.), _i(l) (Cont.) = (Adv.), +§¢ (Cont.). (9)

Consequently, the divergence, advective and skew-symmetric forms are equivalent if (Cont.) = 0, and there are only two
independent convection forms. The arithmetic average directly gives one of the skew-symmetric forms:
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However, the skew-symmetric form above contains multiple temporal derivative terms and seems too difficult to integrate
in time with an explicit time marching method. Fortunately, the following transformations reveal the existence of useful
skew-symmetric forms:
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where ,/pt; 2 V;::’ ‘= Zle VP 2 VO’j:’ ? for three-dimensional problems. The last representation in (11) is available if complex
number can be handled. It is apparent from (10) and (11) that there are at least sixteen variants of the skew-symmetric form.
In this study, the canonical form of the skew-symmetric form which is secondary conservative a priori is selected from

among the sixteen variants as

B 1 /0py;
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Again, the divergence form is primary conservative a priori, that is, conservative without the aid of the continuity. The
secondary conservation property of the skew-symmetric form is demonstrated as follows:
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It is now possible to clarify the identities of the existing quasi-skew-symmetric forms by Feiereisen et al. [10] and Blais-
dell et al. [11], and Morinishi et al. [15], respectively:
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From Egs. (9)-(11), these forms are analytically equivalent to the divergence and advective forms, respectively, and are
not secondary conservative without the aid of the continuity:

(gSkD.), = (Skew.), +%¢ (Cont.) = (Div.),, (16)
(qSKA.), = (Skew.) —%qﬁ (Cont.) = (Adv.),. (17)

Fortunately, the numerical stabilities of these forms are much better than those with the divergence and advective forms
as long as the last terms in (14) and (15) are discretized in the same manner as that in the discrete continuity. This implies
that the stabilities of the quasi-symmetric forms are supported by the discrete consistency with the continuity. Note that an
alternative quasi-skew-symmetric form based on the divergence one was used in Blaisdell et al. [12] and Ducros et al.
[13,14].
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This form can be rewritten as
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and has no direct relation with the skew-symmetric form through the continuity for compressible flow, although it recovers
the skew-symmetric form at the incompressible limit.

3. Analytical requirements

The governing equations for compressible flow considered in this study are the continuity, momentum, and internal en-
ergy equations as well as the equation of state:

(Cont.) =0, (20)

(Conv.); + (Pres.); = oty (21)
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In these equations, p is pressure, e = C,T is internal energy, T is temperature, C, is the specific heat at constant volume,
T;; are the components of viscous stress, g; are the components of heat flux, u is viscosity, and x is thermal conductivity.
The power law dependence of viscosity u/u, = (T/To)*’® is supposed, where p, and T, are reference viscosity and tem-
perature, respectively. For the ideal gas flow, p(p,e) = (y — 1)pe, p(p,e) =p/((y — 1)e), and e(p,p) = p/((y — 1)p). The spe-
cific heat y = C,/C, is set to 1.4, where C, is the specific heat at constant pressure. The Prandtl number Pr = C, /K is set
to 0.71.

In the above equations, inviscid terms are written symbolically. (Cont.) is the left-hand side of the continuity and defined
in (5). (Conv.); is a generic form of convective term in the momentum equation and takes one of the following forms, that is,
divergence, advective, or skew-symmetric forms:

(Div.) = 2t U (25)
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(Conw.), is a generic form of a convective term in the internal energy equation and takes one of the following forms:
(Div), =€ 4 ag}‘;{'e, (28)
(Adv), =p % ¢ puj%, (29)
(Skew.), = \/ﬁa\({f ¢ +% <ag;je +pu; %) (30)

(Pres.); and (PD.), are the pressure term in the momentum equation and the pressure-dilatation term in the internal energy
equation, respectively:

)
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The commutability and secondary conservation property of the convective terms for the momentum equation are dem-
onstrated as follows:

(Div.); = (Adv.); + u; (Cont.), (33)

(Skew.); = % (Div.); + 1 (Adv.)' = (Div.); - %ui (Cont.) = (Adv.); + %ui (Cont.), (34)
_ Opuz/2 0pu u2/2

u, (Skew.), = == éxj (35)

where the summation rule is not taken for the subscript o in the last equation. In the same way, the commutability and sec-
ondary conservation property of the convective terms for the internal energy equation are demonstrated as follows:

(Div.), = (Adv.), + e (Cont.), (36)

(Skew.), = %(Div.)e +%(Ad1/.)e = (Div.), — %e (Cont.) = (Adv.), +%e (Cont.), (37)
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The total energy is one of the important conserved variables and is preferred in compressible flow simulations with strong
discontinuity, since the solutions are often represented in weak form. For unsteady compressible flow simulations at low-
Mach number, on the other hand, one of the thermodynamic variables (internal energy, enthalpy, entropy, etc.) is rather pre-
ferred than the total energy [19]. In this case, the total energy should be conditionally conserved.

The equation of total energy, E = u;u;/2 + e, is obtained by adding the kinetic and internal energy equations. The kinetic
energy equation is u; times the i-component of (21) with summation over i. The use of skew-symmetric form in the kinetic
energy equation is convenient for the derivation of the total energy equation.

. oTjj ou; aq;
{u; (Skew.); + (Div.),} + {u; (Pres.); + (PD.),} = {ui (6_xj> + (1',-,- 8_)9’)} 8xj' (39)
The convective term in the total energy equation is composed of
4 . __OpE  0puyE
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This relation is useful for the specification of conserved discrete total energy norm. The pressure diffusion term in the
total energy equation is composed of the pressure work term in the kinetic energy equation and the pressure-dilatation term
in the internal energy equation.

ou;p
OXi '

In addition, the viscous diffusion term in the total energy equation is composed of the viscous stress work term in the
kinetic energy equation and the viscous heating term in the internal energy equation.

) afij __6u,— o 8“1'1',']'
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Therefore, the sum of these terms is conservative in the total energy equation.
The enthalpy, h = e + p/p, is sometimes selected as an energy variable [18]. Its transport equation and accompanying
state equation are as follows:

ui(Pres.); + (PD.), = (41)

du; 9
(Conv.), — (DpDt.), = ,}87]787] (43)
Wlthp :p(pvh)v or p - p(p7 h)7 or h = h(pvp) (44)

For the ideal gas flow, p(p,h) = (y — 1)ph/y, p(p,h) = yp/((y — 1)h), and h(p,p) = yp/((y — 1)p). The total energy is com-
posed of E = u;u;/2 + h — p/p with enthalpy. (Conv.), is a generic form of convective term in the enthalpy equation and takes
the same form of convective term for (Conv.),, where e is replaced by h. (DpDt.), is the material derivative of pressure in the
enthalpy equation defined by

_op . Op
ot T Uig

The equation of total energy is also derived by adding the kinetic energy and enthalpy equations:

. ij i 0
{u; (Skew.); + (Div.),} + {u; (Pres.); — (DpDt.),} = {ui (%}’) + (‘cij %‘l;)} 8;2 (46)

(DpDt.), = (45)
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The left-hand side of the above equation is rewritten in the conservative form as

{u; (Skew.); + (Div.),} + {u; (Pres.); — (DpDL.),} = BaLf + 8’;;{”,
"

(47)

where H = u;u;/2 + h is the total enthalpy.
The objective of this work is to derive the fully conservative finite difference schemes for compressible flow that satisfy
these properties in a discrete sense.

4. Fully discrete finite difference schemes

In this and the following sections, analysis is limited to a uniform staggered grid system for clarity and suitability at a low-
Mach number. The internal energy is chosen as an energy variable. For the reader’s convenience, schemes in a regular grid sys-
tem are given in Appendix A, and fully conservative schemes in a non-uniform staggered grid system are presented in Appen-
dix B. The scheme in a non-uniform staggered grid system with enthalpy as an energy variable is included in Appendix B.

4.1. Discrete operators

In this study, spatio-temporal discrete values are represented as ¢{;;, = ¢((X1);, (X2);, (X3),; (£)"), where (x1); = iAx1, (X2); =
JjAXz, (x3), = kAx3,and (t)" = nAt. The grid spacings, Ax;, Ax,, and Axs, are constant, and At is the time increment. Mid-points
are denoted like i + 1/2.

Finite difference, interpolation and permanent product in x; direction with stencil width m are defined, respectively, as [1]

om@|  _ Pimpjk = Pimpk (48)
OmX1 ik - mAx1 ’
—me | _ Pivmzik + Pimpik

ik 5 (49)
| Pim2ikViomzik T Vim2ikPiom2ik
o= > . (50)

Discrete operators in x, and x; directions are defined in the same way as for x; direction. The index j in the finite differ-
ence dn,¢/dmx; is physical and follows the summation convention. On the other hand, the indices j in ¢ and (pr//ij are
numerical and do not follow the convention. These numerical indices take the same value as the same physical index in
the same term. Finite difference and interpolation in time with stencil width 1 are also defined as [16]

M n+1/2 _ ¢n+1 _ (/)n (5])
ot At ’
_qgn+1/2 Lt
i % (52)
The following identities [1] will be used to derive some relations later in this study:
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4.2. Fully conservative second-order accurate finite difference scheme in a staggered grid system

In this subsection, a finite difference scheme in a spatio-temporal staggered grid system like Pierce et al. [17] and Wall
et al. [18] is discussed. An example of the staggered grid system on x; — X, plane is shown in Fig. 1(a). Each velocity compo-
nent is staggered in space by one-half grid spacing with respect to the scalar variables [2]. Fig. 1(b) shows an example of the
staggered grid system on x; — t plane. The main difference from the spatio-temporal grid system by Pierce et al. [17] and
Wall et al. [18] is the temporal arrangement of internal energy. The energy variable is arranged at the same temporal level
as that for the velocity. This arrangement makes the definition of discrete total energy norm unambiguous as shown later (in
(83) and (84)). In addition, the diagonal components of stress tensor are defined at the center of cells, while the off-diagonal
components are defined on different edges.

Based on the analytical requirements of the governing equations and the relation between discrete operators, we can con-
struct fully discrete fully conservative second-order accurate finite difference scheme for (20)-(23):

(Cont.-FS2) = 0, (62)
(Conv.-FS2), + (Pres.-Fs2), — 2151 (63)
b]Xj
_ . 517:[1 blq]
(Conv.-FS2), + (PD.-FS2), = (ru o) 51xj) . (64)
with p' =p(p',e), or p'=p(p".e), or e=e@p".p"). (65)

u; is a special interpolation of the velocity and defined later in (74). In this study, discretizations are done at possible spatio-tem-
poral locations corresponding to the discrete operators and the configuration of discrete variables. For instance, the discrete
continuity is defined at the point of internal energy. Inviscid terms are denoted symbolically, where —FS2 denotes a fully dis-
crete second-order accurate approximation in a staggered grid system. (Cont.-FS2) is the left-hand side of the continuity.

01 &;
(51XJ

(Cont.-FS2) = ()’p P+ 50 (=0, (66)

where g; is the numerical mass flux for the second-order scheme in a staggered grid system defined by

7][“1

g=p"u (67)

(Conw.-FS2); is a generic form of the convection scheme for the momentum equation and takes one of the following three
forms, that is, divergence, advective and skew-symmetric forms:

5 _—nlx,- 5 _]tlxl —1x

. _o0p 18 uj

(Div.-FS2), = M L A (68)
_ et 51Ux 1t 1?” et o1l "

(Adv-Fs2), =" S+ (u, u,) rait A vl (69)

1t —x; — I 1y gy
—1x s A /AT 5 1t A~ —
(Skew.-Fs2), = \[p "+ VP U 1 ( 18 W ot ) (70)

ot 2 01Xj (51Xj

where the second term in the right-hand side of (Adv.-FS2); is required for the commutability with (Diz.-FS2); and
(Skew.-FS2),, although it seems to be anomalous. (Conv.-FS2), is a generic form of the convection scheme for the internal
energy equation and takes one of the following forms:

i-3/2 i-172  i+12 432
i-3/2 i-172 i+172 i+3/2

I 77777 { )Ji /} 777777 J+32 oobeeees f f f - n+3/2
Ax,| J+1 .

20 { T F 777777 o ®: 0 p e AtI — % * % ST P, D
szI Jf > U AtI . : o:c
PR { L F rrrrrr - j=12 A U, - % % ’ITJ “nmiz WUy

sz j-1 AzI n-1
,,,,, % T $ - j=3R2 (Ir % % - n=3/2
T t i—1 i i+]

XZ i+1
L»xl Ax; Ax Ax
T_,Xl Ax;  Ax, ree !

Ax,

(a) z1-z5 plane (b) x1-t plane

Fig. 1. Spatio-temporal staggered grid system. i, j, and n are spatio-temporal location indices.
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X

1t =1
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; and é are special interpolations which require for the construction of fully discrete fully conservative schemes:

@. (74)

1t

—1x;
[=1t
~ P u;

U =

The square-root density weighted interpolation was independently derived by Morinishi [20] and Subbareddy and Can-
dler [21]. The derivation by Subbareddy and Candler [21] is based on the Roe’s parameter vector [22]. The author’s derivation
[20] is more straightforward and based on the discrete form of the temporal derivative term in the skew-symmetric form. For
instance, é is derived so as to satisfy the following relation:

—1t —1t _
o Snype) 5 p'ter)2
e( /pn ): 1P / .

ot ort

The term in parentheses is a natural discrete form for the temporal derivative term in (30) and shown in (73). The right-
hand side of the above equation is rewritten using (60) as

ort at —! oit
Y
Comparing these equations, the definition of é in (74) is obtained. Then, the spatial derivative term in the skew-symmet-
ric form of (73) is derived to satisfy the secondary conservation property using (57) and é.
(Pres.-FS2); and (PD.-FS2), are the discrete pressure term in the momentum equation and the discrete pressure-dilatation
term in the internal energy equation defined, respectively, by

—1t
o ﬁ“ 62/2 :ﬁnél /plt e - ﬁ“ e (Wu 51 /ﬁ" e)
—_— i .

N j‘lt]t

) _op
(Pres.-FS2); = X (75)
—1t 5, 1
(PD.-FS2), =p" ‘j; ’; : (76)
144

The double temporal interpolation on the pressure was introduced by Wall et al. [18] to make the pressure term implicit.
Discrete commutability between the divergence and advective forms for the momentum equation is demonstrated using
(53), (56), (58), (59) and (61) as follows:

1x;

(Div.-FS2); = (Adv.-FS2); + U; (Cont.—FSZ)“ . (77)
The relation for the skew-symmetric form for the momentum equation is demonstrated using (59), (60) and (77) as
1 .. 1 . | PP ——T
(Skew.-FS2); = 5 (Div.-FS2); + 5 (Adv.-FS2); = (Div.-FS2), — 5 Ui (Cont.-FS2)
1.
= (Adv.-FS2); + 5 Ui (Cont.-FS2) . (78)

The secondary conservation property of the skew-symmetric form for the momentum equation is also demonstrated
using (57) and (60) as
——H]X’

—1xy —— 1x;
_ 20 5 g Uy U [2
T (Skew-Fs2), ~ 01 P W/2 08 Uil

ot 51Xj

; (79)

where the summation rule is not taken for the subscript o.. These are discrete analogues of (33)-(35). The commutability and
secondary conservation property of the convection schemes for the internal energy equation are also demonstrated in the
same way:
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(Div.-FS2), = (Adv.-FS2), + & (Cont -F52) ", (80)

(Skew.-FS2), = % (Div.-FS2), + % (Adv.-FS2), = (Div.-FS2), — %é (Cont—FS2)"* = (Adv.-FS2), +%é (Cont-FS2)"", (81)
(5 plt e2/2 5] Eltﬁle/z

e (Skew.-Fs2), = -1 +—1 : (82)

o1t (31Xj

The convective term of the total energy equation obtained as a result is written as the following form using (53), (57) and
(60),

— i . 01(pE) 01 lfllxi:vAlleXi 10 £1%
; (Skew.-FS2); " + (Div.-FS2), = == iB2 4 < S& mu o +gten ), (83)
1 14§

where (pE), is the discrete total energy norm conserved by the second-order scheme;
1x;

1 —gtx —
(pE)Fszzj Pl +pte (84)

The conservation property of the pressure term in the total energy equation is then demonstrated using (56) as

1x;
e
4+ (PD-Fs2), =P (85)

1x;
i 01Xi

U; (Pres.-FS2)

The total energy conservation for the viscous term is also demonstrated as follows:

—1x; ~ ~
01Ty 01 U 01 Ui O Ty
=2 4 (roar)=("=—1), (86)
(31Xj 01X 51Xj
where
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is the discrete viscous heating term in the internal energy equation, and

1x; 1x3 —1x —1x3
o [y, = —1x —1x; ~ 1y, | =%
oW Tyn U Ty U3 T3 o1 U1 Tar A+ UTy AU T3

01 L/l\, O Tjj _ 4
5]Xj o 01X1 01X
—in 1xq —x 1%y B
o1l T +Uy T3 +UsTss
+ 88
51 (88)

is the viscous diffusion term in the discrete total energy equation.

The present fully discrete scheme is fully conservative at the inviscid limit in the following sense: the convection schemes
for divergence and skew-symmetric forms are primary and secondary conservative, respectively, without the aid of the dis-
crete continuity; the convection schemes for divergence, advective, and skew-symmetric forms are commutable if the dis-
crete continuity is satisfied; and the sum of the pressure work term in the consequent kinetic energy equation and the
pressure-dilatation term in the internal energy equation is conservative. These constraints are exactly satisfied in the spa-
tio-temporal discretization. In the present scheme, the sum of the viscous work term in the kinetic energy equation and
the viscous heating term in the internal energy equation is also conservative, although this condition is not mandatory
for stable unsteady simulation at high Reynolds number. In addition, the present discretization for the continuity and
momentum equations reduces to the fully discrete fully conservative scheme for incompressible flow by Ham et al. [16]
at the limit of constant density.

4.3. Spatially fourth-order accurate fully conservative finite difference scheme in a staggered grid system

In this subsection, spatially fourth-order fully discrete fully conservative schemes for the inviscid terms are constructed
based on the same way as in Morinishi et al. [1]. Commutability and secondary conservation property of the convection
schemes and the energy conservation property of the pressure-related terms are demonstrated in the same way as those
for the second-order scheme. Therefore, the corresponding discrete properties are presented without any proofs. The scheme
for the left-hand side of the continuity is
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op (9618 1038

-FS4,) = — - — = =
(Cont.-FS4,) 5.t + (8 o 8 o, (=0),
where —FS4, denotes a fully discrete spatially fourth-order accurate approximation in a staggered grid system with the sec-

ond-order accurate temporal discretization. In this subsection, the numerical mass flux is replaced by
——4thx;
71f ]
g&=p U (90)

h. _
where $4t N = (9¢1X1 - 3x’) /8 is the fourth-order accurate spatial interpolation. The fourth-order accurate convection schemes

for the momentum equation with the divergence, advective, and skew-symmetric forms are defined, respectively, as

(89)
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where the square-root density weighted interpolation of velocity is replaced by
_—n4thx,- u 1
U = Pj]; (94)
_—u4thxl
p

The fourth-order accurate convection schemes for the internal energy equation are also defined in the same manner as
follows:

1 5, gt 5. gt 3
(Div-FS4y), = 1P e+(9 18 € 158 , (95)
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The square-root density weighted interpolation of internal energy, ¢, is the same as that for the second-order scheme as
shown in (74). The fourth-order discrete forms for the pressure-related terms in the momentum and internal equations are

_]t —_
9 5151r 1 53131[
(Pres.-FS4,); =3 o "8 om (98)
_odt (9ol 1556
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Commutability and secondary conservation property of the convection schemes for the momentum equation are demon-
strated as follows:

1x; 3x;
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where the summation rule is not taken for the subscript o in the last equation. The commutability and secondary conserva-
tion property of the convection schemes for the internal energy equation are also indicated as follows:

(Div.-FS4,), = (Adv.-FS4,), + é (Cont.-F54)”7 (103)
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(104)
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The convective term of the total energy equation obtained as a result is written in the following form:
9= 1% 1 = 3X; .
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where conserved discrete total energy norm for the fourth-order scheme, (pE)s,,, is
1 =t e L
(PE)pss, = 3 pluy  +ple (107)
The conservation property of the pressure term in the total energy equation is then demonstrated as
1—1xi _1“3
9 = w1 = 3% 961t p" 1658 p"
{§ u; (Pres.-FS$4,); — 3 u; (Pres.-FS4,); } (PD.-F$4,), = 3 5. -3 5o (108)

Spatially sixth- and higher-order schemes are also constructed in the same manner as in Morinishi et al.[1,4]. Arrangement
for a non-uniform staggered grid is done in the same way as in Appendix B and Morinishi et al.[4]. Corresponding high-order
treatment for the viscous term and recommendable boundary treatment are undertaken in the same way as in Desjardins
et al. [7].

5. Semi-discrete convection schemes

For semi-discrete schemes considered in this section, the spatio-temporal grid in Fig. 1(b) is replaced by Fig. 2.
Semi-discrete fully conservative finite difference schemes in a staggered grid system are written as
(Cont.-S2), (Div.-S2);, (Cont.-S4), (Div.-S4);, etc., which are the exclusions of the temporal discretization operators from
(Cont.-FS2), (Div.-FS2),, (Cont.-FS4,), (Div.-FS4,),, etc., respectively. For instance, the fourth-order accurate semi-discrete
schemes for the left-hand side of the continuity and the convection forms of the momentum equation are
d ) 9 (3 p4thxjuj 1 53 p4thxjuj

(COTlt—S4) = E + ey (S]Xj 8 53)(] = O)7
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The fourth-order accurate convection schemes above are equivalent if (Cont.-S4) = 0 and time marching error is negligi-
ble. The semi-discrete schemes of the convection forms of the internal energy equation and the pressure-related terms are
defined in the same way. The schemes for divergence and advective forms are straightforward extensions of the fourth-order
accurate schemes for incompressible flow by Morinishi et al. [1], and have already been used in Nicoud [6] and Desjardins
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Fig. 2. Spatio-temporal grid for semi-discrete schemes. i and n are spatio-temporal location indices.

et al. [7]. Note that the temporal derivative term is included in each form in the present study, which is one of the important
points for the construction of a set of commutable convection schemes for compressible flow. Even for semi-discrete meth-
ods, the present skew-symmetric form seems to be the first in the literature to the author’s knowledge.

For compressible flow simulations at a low-Mach number, a compact finite difference has been used as a high-order spa-
tial discretization method after Lele [23]. However, the convection schemes with the compact finite difference are in general
not commutable with each other even if the corresponding discrete continuity is satisfied, and none of the fully conservative
convection scheme with the compact finite difference seems to exist. This means that the choice of the form of convection is
definite for the reliability of the simulation with the compact finite difference. The rest of this section concentrates on the
construction of a semi-discrete convection scheme with a compact finite difference in a staggered grid system. For the read-
er’s convenience, the compact finite difference scheme in a regular grid system is presented in Appendix A.2.

5.1. Mid-point compact finite difference

It is natural to introduce the mid-point compact finite difference and interpolation to the schemes in a staggered grid sys-
tem [24]. The n-th order accurate mid-point compact finite difference in x; direction up to n =8, 6, ¢/d¢,X1, is obtained by
solving the following tri-diagonal system [23]:

5Cnd) + 6Cnd) aacnd) 5]¢
OC"X] i-1jk e, X1 Oc, X1 51X1

53‘/)
B

55¢

55x1 (109)

ijk i+1.jk ijk ijk ij.k

A general sixth-order compact finite difference is given by A= (225 -2060)/192, B = (4140 —25)/128, and
C=(9—620)/384. o« = 9/62 is the most compact sixth-order compact finite difference. The eighth-order formula is obtained
with o = 75/354. The n-th order accurate compact interpolation in x; direction up ton =8, ¢, is also obtained by solving
the following tri-diagonal system:

ag +¢

i-1jk

CnXq CnXq —CnXq 1xq 3% ——5x1

+ B¢

N =A¢
ijk

A general sixth-order compact interpolation is given by A = (75 + 706()/64, B = (126& — 25)/128,and C = (3 — 10a)/128.
o = 3/10 is the most compact sixth-order compact interpolation. The eighth-order formula is obtained with & = 5/14. The
compact difference and interpolation in x, and x; directions are defined in the same way as for x; direction.

+C (110)
ijk

i+1jk ijk

5.2. Compact finite difference schemes in a staggered grid system

The left-hand side of the continuity is discretized with the compact finite difference and interpolation in a staggered grid
system as
dp e, 0™y

Cont.-SCn) = —— + =3 (=0 111

( =a 0 (111)
where —SCn denotes a n-th order accurate compact scheme in a staggered grid system. For instance, —SC6 stands for a sixth-
order accurate compact scheme in a staggered grid system. The schemes of the three convection forms for the momentum
equation are as follows:
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The three convection forms for the internal energy equation are discretized as

CnX;

_dpe N S, PN U

(Div-SCn), == ox (115)
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(Skew.-SC), = VP == + 5 < LS el (117)

The pressure term in the momentum equation and the pressure-dilatation term in the internal energy equation are dis-
cretized as follows:

- = 6C"p
(Pres.-SCn); = b’ (118)

_ 5Cnui
(PD.-SCn), =p 5 (119)

Note that the set of convection schemes with the n-th order accurate compact finite difference are in general not com-
mutable even if the corresponding discrete continuity, (Cont.-SCn) = 0, is satisfied. Nevertheless, the analysis is interesting
because of the prospect for the numerical stability with the present skew-symmetric form.

6. Numerical tests
6.1. Time marching methods

A third-order Runge-Kutta method [25] is used for time advancement of the semi-discrete equations for mass, momen-
tum and internal energy in Section 5. The transport equations with divergence, advective, and skew-symmetric forms of con-
vection are advanced, respectively, with the following procedures:

d n+ n+ n+ n+
WO _ g2 — (i)™ — "1 = (pg)"™ /™,

dqﬁil n+1
E*ERQ_%’ )

AR~ R — (Vo™ = ¢ = (o) VP,

\/ﬁ
where RZ, Rf; and Rf,) are the right-hand sides of the corresponding equations. The pressure is estimated using the equation
of state in simulations with semi-discrete schemes.

On the other hand, the fully discrete finite difference schemes proposed in Section 4 require a robust solver for the non-
linear discrete system. In this study, the non-linear system of fully discrete equations is solved using the Jacobian-free New-
ton-Krylov (JFNK) method [26,27] with the flexible preconditioning GMRES(m) method [28,29] as the Krylov inner solver,
where m is the period of restarted GMRES method and m of 30 is used. In the non-linear solver, pressure, velocity, and inter-
nal energy are selected as the components of the solution vector. The choice of pressure as one of the solution vector com-
ponents corresponds to the pressure-based method in which the pressure Helmholtz equation is solved [17,18]. The density
is estimated using the equation of state. The non-linear solver may be replaced by the Helmholtz method with some mod-
ifications for practical problems.

6.2. Periodic inviscid flow

To demonstrate the fully conservative property of the present schemes with numerical test, inviscid flow simulations are
performed on a three-dimensional periodic domain. This is very simple but is an ideal test for the secondary conservation
property of convection schemes. The analytical conservation requirements dictate that the mass, momentum and total en-
ergy should be conserved in time, while the mass, momentum, and internal energy equations are solved. The periodic region
isLo x Lo x Ly (Lo = 1), and 10 x 10 x 10 mesh is used. Solenoidal initial velocity fields are generated from a vector potential
constructed from a set of uniform random numbers. The initial velocity fields are then normalized as (u;) = (u;) = (u3) =0
and (u? + u? + u?)/3 = u2, where () indicates volumetric average. The initial thermodynamic variables are uniformly set to
p/po =1, e/uz =1/[y(y — 1)M3], and p/(p,u2) = 1/(yMZ), where My = uy/co = 0.2 is the initial Mach number. The thermo-
dynamic conditions correspond to e/e; = 1 and p/p, = 1, where co = [yp,/Po]"’> = [y(y — 1)e]'/? is the initial speed of sound.

Table 1 shows the relative error of total energy, & = ((pE) — (pE),)/{pE),, for several semi-discrete schemes in a stag-
gered grid system with RK3 after an integration time of tuy/Ly = 10. Time increment of At up/Lo = 0.002 corresponds to
the initial Courant number of 0.16, which is lower than the stability limit of C < 1.73 for RK3. The semi-discrete fully con-
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Table 1

Total energy conservation error for semi-discrete schemes with RK3. Atug/Ly = 0.002.
Convection schemes g at tug /Lo = 10
(Div.-52) -3.275 x 107°
(Adv.-S2) 7274 x 107°
(Skew.-S2) -6.689 x 10°°
(Div.-S4) —6.296 x 107°
(Adv.-S4) -1.377 x 107*
(Skew.-S4) -1.276 x 107*
(Div.-SC6) Blow up
(Adv.-SC6) Blow up
(Skew.-SC6) -1.171 x 1073

servative second- and fourth-order schemes with the divergence forms, (Div.-S2) and (Div.-S4), conserve total energy to
within the time marching error. The corresponding semi-discrete schemes with advective and skew-symmetric forms,
(Adv.-S2), (Skew.-S2), (Adv.-S4), and (Skew.-S4), are also seen to be conservative. The results of the sixth-order accurate
compact finite difference method (¢ =9/62, @ =3/10) with the divergence and advective forms, (Di».-SC6) and
(Adv.-SC6), diverge. The only stable case with the compact finite difference method is the one with the skew-symmetric
form of convection, (Skew.-SC6). This reveals that a stable simulation with high-order compact finite difference is possible
with the skew-symmetric form of convection without any stabilization technique like low-pass filtering.

Table 2 shows the relative total energy error for several fully discrete schemes in a staggered grid system. The fully dis-
crete fully conservative second-order accurate schemes, (Div.-FS2), (Adv.-FS2), and (Skew.-FS2), conserve total energy to
within the round-off error of computer, which demonstrates the complete commutability and conservation property of
the present schemes. The fully discrete fully conservative spatially fourth-order accurate schemes,
(Div.-FS4,), (Adv.-FS4,), and (Skew.-FS4,), also conserve total energy to within the round-off error. In this table,

(Div.-FS2'), is the convection scheme with divergence form, where #; in (68) is replaced by o,
i i i R v
. sip' w gt w"
Div.-FS2'), = L
( )l o1t + O1Xj

7 (120)

which corresponds to the fully discrete convection scheme in Pierce et al. [17] and Wall et al. [18]. As mentioned by Pierce
et al. [17], this convection scheme has a secondary conservation error of O(At?). Note that the time marching method used in
the above convection scheme is not the Crank-Nicolson method but an implicit mid-point method which is equivalent to the
one-stage second-order accurate implicit Runge-Kutta (IRK2) method. Therefore, the time marching method in the fully dis-
crete fully conservative schemes in Section 4 is regarded as a modified implicit mid-point method.

Fig. 3 shows the relative total energy error at tug/Lo = 10 as a function of the time increment for several schemes. As ex-
pected, the time stepping error decreases with the cube of At for the semi-discrete schemes with RK3. The error of (Div.-FS2")
decreases with the square of At, which demonstrates numerically the estimation of Pierce et al. [17]. On the other hand, the
errors of (Div.-FS2) and (Div.-FS4,) retain the order of a computer round-off error as long as the non-linear solver works.
Indeed, the Courant number for Atug/Lo = 0.1 is over 8.

6.3. Compressible isotropic turbulence

The second numerical test validates the fully discrete fully conservative second-order accurate scheme in Section 4 for
viscous flow by performing DNS of compressible isotropic turbulence on a 64° grid with Re, = 30 and M,, = 0.3, where
Re;, = pouoi/ iy and My, = V3 /co. The periodic computational box is 27tLy x 27Ly x 27Ly. The solenoidal initial velocity
field is generated with a spectrum distribution [30] of

Table 2

Total energy conservation error for fully discrete schemes. Atug/Ly = 0.002.
Convection schemes & at tug /Lo = 10
(Div.-FS2) —3.526 x 1074
(Adv.-FS2) -1.266 x 10713
(Skew.-FS2) —-3.009 x 1071
(Div.-FS4,) ~1.355 x 10714
(Adv.-FS4,) —3.425x 10713
(Skew.-FS4,) 2541 x 10713

(Div.-FS2') +2.110x 1077
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Fig. 3. Total energy conservation error as a function of time increment for fully and semi-discrete schemes. Semi-discrete schemes are integrated with RK3.

2 4 2 1,2
Fi =167 (1) ¢ 121)

where the peak wavenumber is set to k, = 4/L,. The large eddy turnover time for this spectrum is T = 2/(k,uo). The initial
Taylor microscale of the flow was 4= [(u}?)/((0u}; /0x1)*)]"/* ~ 0.5L;. The thermodynamic variables are uniformly set to
0/po=1, e/uz=3/[y(y= l)MfO], and p/(pyu3) = 3/(ny0). These conditions correspond to e/e; =1 and p/p, = 1, where
Co = [YPo/Po]"* = [y(7 — 1)eg]"/? is the initial speed of sound. A time increment of At/t = 0.02 corresponds to the Courant
number around 1.0.

The evolution of turbulence kinetic energy and thermodynamic variable fluctuations are show in Fig. 4. The various fluc-
tuation quantities are defined by: K = (u}* + u}® + 14?)/2, p.. = (02", v, = (1/p)*)"?, and e, = (¢2)"/. In the figure,

rms
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Fig. 4. Compressible isotropic turbulence with the second-order fully discrete fully conservative scheme proposed in Section 4. O are the de-aliased
spectral DNS data at Re; = 30 in [19].



Y. Morinishi/Journal of Computational Physics 229 (2010) 276-300 291

o are the de-aliased spectral DNS data in [19] with Re; = 30 and M;, = 0.3 with the corresponding initial condition. The pres-
ent Re; = 30 simulation is regarded as a DNS and very good agreement with the referenced DNS data is observed. The present
simulations except Re; = 30 are unresolved and are carried out in order to check the non-linear numerical stability of the
scheme for viscous flow. The fluctuation intensities increase with increasing Re;, however, the values are bounded at those
for the inviscid simulation (Re; = oo). Even for the inviscid case the simulation is stable for the present initial condition.

6.4. Open cavity flow

The third numerical test is done on the simulation of a periodic two dimensional channel flow with an open cavity, in
which the streamwise grid spacings around the vertical cavity wall lines are fine as shown in Fig. 5. The flow field is
composed of periodic main channel of 5h x 2h and a shallow open cavity of 2h x h/2 and is bounded with upper and
lower isothermal walls. The grid numbers in the main channel and open cavity are 260 x 100 and 100 x 50, respectively.
The grid spacings adjacent to the walls are set to h/200. The Reynolds number based on the half main channel height
Rey = poUch/u, is set to 800 or 1200, where U, is the centerline velocity of laminar basic solution for the plane channel.
The periodic flow is driven by the streamwise non-dimensional uniform body force of —2/Re,. The Mach number based
on the centerline velocity and internal energy on the walls is M. = U./co = 0.2, where ¢o = [y(y — 1)60}1/2 and eq is
internal energy on the walls. The initial velocity profile in the main channel is the basic solution for the laminar plane
channel. The initial thermodynamic variables are uniformly set to p/p, =1, e/U?> =1/[y(y — 1)M?], and p/(p,U?) =
1/(M2).

The simulation is carried out using the fully discrete fully conservative second-order accurate finite difference scheme in
the non-uniform staggered grid system presented in Appendix B. Stable simulations were possible with a non-dimensional
time increment of U.At/h = 0.01. The corresponding maximum Courant number is about C = 12, which demonstrates the
robustness of the scheme for simulations with stretching mesh like Fig. 5. Fig. 6 shows the temporal evolution of bulk veloc-

Fig. 5. Numerical mesh for open cavity flow simulation.

0.8 . :

o7k Re,=800 |
o
\-\
N

06

Re,=1200
0.5 ' '
0 1000 2000 3000

U.t/h

Fig. 6. Evolution of bulk velocity at a section of main channel.
